Boltzmann-Fokker-Planck Equations as a Foundation of Behavioral Models
نویسنده
چکیده
It is shown, that the Boltzmann-like equations allow the formulation of a very general model for behavioral changes. This model takes into account spontaneous (or externally induced) behavioral changes and behavioral changes by pair interactions. As most important social pair interactions imitative and avoidance processes are distinguished. The resulting model turns out to include as special cases many theoretical concepts of the social sciences. A Kramers-Moyal expansion of the Boltzmann-like equations leads to the Boltzmann-Fokker-Planck equations, which allows the introduction of “social forces” and “social fields”. A social field reflects the influence of the public opinion, social norms and trends on behaviorial changes. It is not only given by external factors (the environment) but also by the interactions of the individuals. Variations of the individual behavior are taken into account by diffusion coefficients.
منابع مشابه
On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport.
Electron beam dose calculations are often based on pencil beam formulas such as the Fermi-Eyges formula. The Fermi-Eyges formula gives an exact solution of the Fermi equation. The Fermi equation can be derived from a more fundamental mathematical model, the linear Boltzmann equation, in two steps. First, the linear Boltzmann equation is approximated by the Fokker-Planck equation. Second, the Fo...
متن کاملDelay Fokker-Planck equations, Novikov's theorem, and Boltzmann distributions as small delay approximations.
We study time-delayed stochastic systems that can be described by means of so-called delay Fokker-Planck equations. Using Novikov's theorem, we first show that the theory of delay Fokker-Planck equations is on an equal footing with the theory of ordinary Fokker-Planck equations. Subsequently, we derive stationary distributions in the case of small time delays. In the case of additive noise syst...
متن کاملNonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations
We study a general class of nonlinear mean field Fokker-Planck equations in relation with an effective generalized thermodynamical formalism. We show that these equations describe several physical systems such as: chemotaxis of bacterial populations, Bose-Einstein condensation in the canonical ensemble, porous media, generalized Cahn-Hilliard equations, Kuramoto model, BMF model, Burgers equati...
متن کاملPointwise Description for the Linearized Fokker-planck-boltzmann Model
In this paper, we study the pointwise (in the space variable) behavior of the linearized Fokker-Planck-Boltzmann model for nonsmooth initial perturbations. The result reveals both the fluid and kinetic aspects of this model. The fluid-like waves are constructed as the long-wave expansion in the spectrum of the Fourier modes for the space variable, and it has polynomial time decay rate. We desig...
متن کاملGeneral properties of nonlinear mean field Fokker-Planck equations
Recently, several authors have tried to extend the usual concepts of thermodynamics and kinetic theory in order to deal with distributions that can be non-Boltzmannian. For dissipative systems described by the canonical ensemble, this leads to the notion of nonlinear Fokker-Planck equation (T.D. Frank, Non Linear Fokker-Planck Equations, Springer, Berlin, 2005). In this paper, we review general...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993